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Two-dimensional pentagonal structures in dissipative systems
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We report the existence and stability of a two-dimensional pattern with a tenfold orientational order
in a dissipative system described by partial differential equations. The pattern appears in a subcritical
way and results from a superposition of two linearly unstable patterns with different wave numbers.

PACS number(s): 47.20.Ky, 61.44.+p, 61.50.Em, 64.70.Pf

I. INTRODUCTION

Pattern formation in dissipative systems has been wide-
ly studied in the recent years both from the experimental
and theoretical point of view. Such patterns are observed
in a whole variety of natural phenomena such as in con-
vecting fluid, liquid crystals, optical systems, and chemis-
try. For these cases the problem of interest is whether
there exists a universal basic mechanism of transition
from the spatially homogeneous pattern to a perfectly or-
dered cellular pattern. Experimentally, a wide variety of
structurally ordered patterns has been observed (rolls,
rhombi, hexagons, etc.). Some years ago, quasiperiodic
crystals have been experimentally observed in condensed
matter physics [1-4] and more recently, also in dissipa-
tive system [5]. In this experiment, a stable standing
wave pattern with a twelvefold orientational order is gen-
erated by the parametric excitation of capillary waves.
The excitation spectrum consisted of two frequencies
(mv,nv) with m and n relatively prime and of different
parity. In this last example, the pattern wave number is
fixed by the excitation frequency and can be understood
as superposition of two linearly unstable wave patterns.
From a theoretical point of view, it is natural to explain
the existence of quasiperiodic structures in the frame-
work of amplitude equations [6—8]. In Ref. [7], pentago-
nal structure were found stable using amplitude equations
not model equations.

In this paper, we present a simple model of a dissipa-
tive system whose dynamics is described by two coupled
Swift-Hohenberg equations. We shall consider a spatially
extended system so that the influence of the boundaries
can be neglected. Here, in analogy with the experimental
work reported in Ref. [5], two different wave numbers
can become unstable at the same time and the structure
results from a superposition of two linearly unstable pat-
terns with different wave numbers. We shall show that
there exists a region in the parameters space where pat-
terns with a tenfold orientational order are stable.

II. PATTERNS WITH FIVEFOLD
ORIENTATIONAL ORDER
IN COUPLED SWIFT-HOHENBERG EQUATIONS

We start by studying a model whose dynamics is de-
scribed by two coupled Swift-Hohenberg Egs. [9].
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Our aim is to show the existence and stability of pentago-
nal structures. To this end, we assume control parameter
€ to be small. As can be easily checked, when p; and yu,
become positive, the homogeneous solution loses its sta-
bility toward a structured solution. Near the transition,
due to the rotational invariance of the system, the struc-
ture of all modes which are equally amplified is e’*™.
Each k lies in two separate rims of radius k, and g, re-
spectively. Pentagonal patterns corresponding to the
final state in which only a finite number of modes (five)
participate are
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where vectors k; and g; are the unstable wave numbers
shown in Fig. 1. “c.c.” and “h.o.t.” stand for complex
conjugate and higher order terms, respectively. Note
that, to avoid hexagonal patterns, Eq. (1) does not con-
tain quadratic terms of the form W? as does Eq. (2).
Again, we can easily convince ourselves that the two pen-
tagonal patterns will resonate only if the following rela-
tions among vectors k) and g, are satisfied (see Fig. 2)
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FIG. 1. The pentagonal pattern results from a superposition
of two linearly unstable structures with different wave numbers.
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FIG. 2. The picture illustrates which relations have to be
satisfied among the lengths of the side of the triangle in order to

obtain a pentagonal structure: |A4B|=|BC|=|DA| and
|DB|=|CD|.
q,=9q;+1— k43, (5)
4=k 17k (6)

The index i runs from 1 to 10. Of course, previous rela-
tions holds only if the two unstable wave numbers ko and
q, satisfy the relation k,/q,=2sin(7/10). It is easy to
verify that, near transition, the equations of the critical
amplitudes A4; and B; read

9,4,=u,A4;+a( Ai+1§i+3+ Zi+4Bi+2H‘2bBi+1§i+4
—3ad;[| 4;P+201 4, >+ 4; 4,
+[A; 32144497, (7

9,B;=u,B; +C(Bi+3zi+4+§i+2Ai+l )+2dAi+ZZi+3
—3aB;[|B;|*+2(|B; 1 1|*+|B, ,,|?
+B; 3°+1B; 4], ®)

where the index i runs from 1 to 5.

Note that owing to the phase invariance, critical ampli-
tudes A4; and B; can be chosen are real. For simplicity,
let us now study the case where the dynamics of the mod-
el is described by a free energy. This occurs when partic-
ular relations among parameters a,b,c,d are satisfied:
a =2b =c =2d. The expression of the free energy reads
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FIG. 3. The bifurcation diagram for pentagonal structures:
the solid line denotes the region where the “quasistructure” is
stable.
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FIG. 4. Pentagonal pattern with a tenfold orientational or-
der. This picture has been obtained by simulating Eqgs. (1) and
(2) and showing the levels of ¥,. The numerical values are
€=0.1, u;=u,=0,a=1,and a =2b =c =2d=1.
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The fixed point of Egs. (7) and (8) (corresponding to pen-
tagons) can be found by setting 4;,=4; and B;=B 1L
When p;=p,, we obtain

+ 2
4,—p, =4tV 2ap (10)
18a

As known, the stability of the pentagonal patterns is
guaranted if the eigenvalues of the linearized operator
around the fixed point are all negatives. An important
feature of this problem is the cyclic (by blocks) nature of
the matrix. Thanks to this property, we easily find the
range of stability of the pentagonal structure (see Fig. 3)
as being

Bo<p<ph, (11

where u, and p, are, respectively,

FIG. 5. Pentagonal pattern with a tenfold orientational order
showing the presence of defects. This picture has been obtained
by simulating Eqgs. (1) and (2) and showing the levels of ¥,. The
numerical values are €=0.1, u,=p,=0, a=1, and
a=2b=c=2d=1.
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In Figs. 4 and 5, two numerical simulations (256 X256
points) of Egs. (1) and (2) are reported. Figure 5 still
shows a pentagonal structure even though many defects
exist. Note that numerical simulations have confirmed
the stability of pentagons even when the dynamics of
model is not governed by a free energy.

Bo= (12)

III. CONCLUSIONS

We have presented a model that foresees a first-order
transition from a spatially homogeneous pattern to a pat-
tern with tenfold orientational order. The ‘“‘quasicrystal-
line” structure is stable in a large region of the parameter
space. This result has been obtained by setting the pa-
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rameters in such a way that Eqgs. (1) and (2) can be writ-
ten in a variational form. As shown, the stability of the
pentagonal structure can be easily understood by simple
geometrical arguments.
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FIG. 4. Pentagonal pattern with a tenfold orientational or-
der. This picture has been obtained by simulating Eqs. (1) and
(2) and showing the levels of W,. The numerical values are
e=0.1, u1=p,=0,a=1,and a =2b=c =2d=1.
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